Use these workarounds to make

distributed deployments possible.

he COM+ Eventservice is an exciting service that

has evolved to address some classic problems of
notifying and receiving events. Also known as Loosely
Coupled Events (LCE), COM+ Events provide an
effective way to decouple components by putting the
logic for publishing and subscribing for events out-
side your components’ scope. COM+ decouples the
event publisher from its subscribers by introducing a

EXPORT A PROXY APPLICATION

Welcome to the COM Application Export Wizard

Application Export Information
Please enter information required to export this application.

C:\Temp\Mpp Prowy.msi

Figure 1 | To distribute your event classes, you must generate an application proxy to
the server application where the event class resides. To do this, select the Application

proxy option in the Application Export Wizard.

44 | VISUAL C++ DEVELOPERS JOURNAL APRIL 2001 | www.vcdj.com

Productive [0] P8

3 Tips to Distribute
With COM+ Events

by Juval Lowy

Windows 2000

middleman called the event class. You provide the sink
interfaces signature, and COM+ provides the event
class implementation and the publication mecha-
nism itself.

As long as you install the publisher, the event class,
and the subscribers all on the same machine, you can
have any topology of interaction. On the same ma-
chine, publishers can publish to any event class, event
classes can deliver events to any subscriber, and sub-
scribers can subscribe to as many event classes as they
like. Unfortunately, the COM+ Events service has a
limitation—the event class and its subscribers must all
be on the same machine. This limitation means dis-
tributed deployments aren’t possible.

In this article you’ll learn three workaround solu-
tions that let you distribute your events across the
network. All the solutions adhere to the limitation that
the event class and the subscribers must reside on the
same machine, and they solve the problem by design-
ing around it. Like most things in life, each solution
has pros and cons, and it’s ultimately up to you, the
system designer, to select the most appropriate solu-
tion for your domain problem.

This article assumes you’re familiar with the con-
cepts of COM+ Events, such as event classes, publish-
ing events, persistent subscribers, and transient sub-
scribers; if you're unfamiliar with these terms, see
Resources for articles that cover COM+ Events basics,
which you should read first to take full advantage of
this article.

All three solutions for distributing COM+ Events
require you to create a proxy application export of the

COM+ server application that contains the event
class. To do this, right-click on the application icon in
the COM+ Component Services Explorer and select
Export from the pop-up context menu. This should
bring up the Application Export Wizard. Click on
Next to go to the second wizard screen, where you
enter a name and location for the application export
file to be created (see Figure 1). Next, export the
application as an Application proxy.

An Application proxy export includes the type
information, as well as the proxy and stub DLLs if
required—but not the event classes or any other
component in the application. You use a proxy instal-
[ation when you want to enable remote access from a

As long as you install the ;
publisher, the event class, and _
the subscribers on the same
machine, you can have any
topology of interaction.

client machine to the machine where the application
actually resides. A proxy export is only available for a
COM+ server application, not for a library applica-
tion. Once installed, you can configure the proxy
application to access any remote machine on the
network where the server application is installed, not
just the machine that generated the proxy export. You
specify the “real” application location on the proxy
application properties page, which is located on the
Activation tab in the Remote server name edit box.

1. One Machine for All

Subscribers and Event Classes

This first solution is the simplest to implement. You
install every event class on one machine, along with all
subscribers. You install the event classes in a COM+
server application and generate a proxy installation for
the event classes’ application. Then you deploy the
event class proxy application on all machines that
host publishers, ensuring the proxy applications point
to the event classes and subscriber’s machine.

When a publisher on a remote machine A wants to
fire an event of type E,, the publisher creates a proxy
for that event class and calls the event method on the
proxy. COM+ marshals the event call to where the
event class resides—on the subscriber’s machine—
and publishes COM+ to all the subscribers that sub-
scribed to it (see Figure 2). Subscribers can subscribe

PRODUCTIVE COM+

easily to more than one event class because the event
classes are installed locally on the subscriber’s machine.

This solution, however, has some disadvantages. If
you distance the event class from the publishers, you
introduce extra—and expensive—round trips across
the network. In addition, the single machine hosting
all the event classes and subscribers becomes a hot spot
for performance, so the machine’s CPU and operating
system must handle all the traffic. Your product also

INSTALL EVENT CLASSES AND
SUBSCRIBERS ON ONE MACHINE

Machine A

Subscriber

Subscribers” Machine

Event Class
@ Event Class Proxy

) Publisher

Machine C

Machine D

Figure 2 | You can install every subscriber and event class on one machine and have
the publisher access the event classes through proxy application. This solution is easy

to set up, but it lacks design flexibility.

MACHINE-SPECIFIC EVENT CLASSES

/ Events Hub \

Machine A

/ Machine B \

Machine C

Figure 3 | A dedicated hub machine distributes the events from a publisher on one
machine to subscribers on many machines using machine-specific event classes.

www.vcdj.com | VISUAL C++ DEVELOPERS JOURNAL APRIL 2001 | 45

class, which only creates a proxy, and fires on the proxy. The
E, proxy forwards the call to the location where E, executes—
on the hub machine, which has a hub subscriber (S,) that
subscribes to the E, event. S, handling the event creates all the
machine-specific event classes (E, E and E) and fires that
particular event on them.

Because the hub machine has only proxy installations of
the machine-specific event classes, the event is distributed to

won’t have load balancing, which
is a major reason for distributing
your components in the first place.
Another problem: The subscribers
might not be deployed ideally.
Without the constraint of having
to reside where the event classes

o MSDN: http;://msdn.",
microsoft.com

- * “A Hands-On Look at oM+
Events” by Jeff Prosise, VCDJ
January/February 2000

are, you might have put the sub-
scribers somewhere else—maybe on the same machine where
the database is, if the subscribers must access it frequently—
so performance might suffer. Finally, the subscriber-machine
solution becomes a single point of failure in your system.

2. Machine-Specific Event Classes

This solution allows you to distribute your subscribers any-
where, according to whatever design preference you have,
enabling you to publish from one machine to subscribers that
reside on multiple other machines (see Figure 3). But this
solution is more complex to manage and deploy than the
first one.

The idea is to create a COM+ Events hub on one desig-
nated machine. The hub machine is responsible for distribut-
ing the events to where the subscribers really reside. You’ll use
two types of event classes. One, called E,, resides only on the
hub machine. You install proxies to E, on all the publishers’
machines. Publishers will only publish using E, . The second
type is the machine-specific event class. Every machine that
hosts subscribers has its own dedicated event class type,
installed only on that machine. In Figure 3, these are E , E,,
and E , corresponding to the three machinesin the figure. You
install a proxy to every machine-specific event class on the
hub machine.

Each event class in this solution supports the same set of
sink interfaces. When a publisher on machine A wants to
publish an event to subscribers on machines A, B, and C, the
publisher on machine A creates an instance of the E, event

ROUTE A SUBSCRIBER ACTIVATION

Route to Machine B Properties

Machine B

i - L il

multiple machines where local subscribers—the “real” sub-
scribers—handle the event. This solution gives you complete
freedom in locating your subscribers—a big advantage.
However, this flexibility comes with a hefty price. When
you publish, you encounter many expensive trips across the
network. Even if every subscriber is on the publisher’s ma-

Unfortunately, the COM+

Events service has a limitation—
the event class and all its
subscribers must all be on the
same machine.

chine, the publisher still must go through the hub machine.
You must duplicate this solution for every kind of event class
you have, and you end up with separate sets of machine-
specific and hub-event classes. This solution’s complexity
meansyou’ll probably end up with adeployment, administra-
tion, and maintenance nightmare on your hands.

3. COM+ (Partial) Routing

This last solution takes advantage of a feature provided by
COM +—butitonly works with persistent subscribers, so you
haven’t solved the whole problem. If your application uses
transient subscribers, which is likely, you must use the first or
second solution. This solution resembles the hub machine
solution, so to distinguish between them T’ll call this the
routing solution.

COM+ provides a field for every persistent subscription
called “Server name” on its properties page, which is located
on the Options tab in the Server name field (see Figure 4). To
access any properties page on any item in the COM+ Ex-
plorer, right-click on the item. Whenever COM+ publishes
an event to a persistent subscriber, COM+ checks the value of
the Server name property before creating the subscriber
object. If the property isn’t an empty string, COM+ creates
the subscriber on the specified machine, fires the event on the
sink interface, and releases the subscriber. Routing events to
multiple machines takes advantage of this feature.

Instead of using machine-specific event classes, as de-
scribed in the second solution, you use machine-specific
persistent subscriptions in the routing solution . For example,

suppose you have a publisher on machine A and a subscribing
component, called MySubscriber, that you want to deploy on

Figure 4 | You can instruct COM+ to create the subscriber object on the machine
specified in the Server name field on the persistent subscription properties page.

46 | VISUAL C++ DEVELOPERS JOURNAL APRIL 2001 | www.vcdj.com

MACHINE-SPECIFIC SUBSCRIPTIONS

Machine B

Events Router

Machine A

Figure 5 | Using machine-specific subscriptions and a designated router machine, you
can distribute events for persistent subscribers. This solution is available only for per-

sistent subscribers.

machines B and C. The publisher will publish using an event
class called E. On machines B and C you add subscriptions to
the event class to the locally installed copies of MySubscriber
(shown as “S” in Figure 5). You then install the MySubscriber
componenton another designated routing machine, together
with the event class E, and install only the proxy to E on
machine A (see Figure 5).

To theinstallation of MySubscriber on the router machine
(called S, in Figure 5), you add machine-specific subscrip-
tions. For every MySubscriber deployment on another ma-
chine (such as B or C), you add a subscription, and you

redirect the invocation to that ma-
chine using the Server name field (see
Figure 6).

Now, when the publisher on ma-
chine A creates a proxy to the event
class and fires an event on it, the call

This solution uses
machine-specific per-
sistent subscriptions.

goes to the router machine. COM+
inspects the subscriptions on the router
machine for the event class, detects
the Server name in the subscriptions,
creates the subscribers on the specified
remote machines, and publishes to them.

I've already pointed out the main drawback of this solu-
tion (persistent subscribers only), but it has a few others. For
one, setting up and configuring the system is difficult. You'll
either have to write some installation scripts to help you
automate the configuration process or manually do it at every
customer deployment. Because every customer site will have
its own machine names, you won’t be able to specify the ma-
chine names in yourapplication MSI file, exported for release.
You must go through the router machine, so you end up
paying for an extra network hop. The router machine can be
a performance bottleneck, and it’s po-

THE ROUTING SUBSCRIPTIONS

im Component Services

|EA Computers
Elg My Computer
| - COM+ Applications
& Activity Demo
COM+ QC Dead Letter Queue List
COM+ Utilities
Router

Route to Machine B
Route to Machine C

Figure 6 | On the router machine, you install another copy of the subscriber and add a
subscription for every machine you have the subscriber deployed on.

Raute ta Route ko
Machine B Machine C

tentially a single point of failure.

About the Author

Juval Lowy is a seasoned software archi-
tect who spends his time publishing and
conducting classes and conference talks on
component-oriented design and COM/COM+.
He was an early adopter of COM and has
unique experience in COM design. This arti-
cle is based on excerpts from his upcoming
book on COM+ and .NET (O'Reilly). E-mail
him at idesign@componentware.net.

Club? Go to www.devx.com

www.vcdj.com | VISUAL C++ DEVELOPERS JOURNAL APRIL 2001 | 47

PRODUCTIVE COM+

